

Top Production Asymmetry at the Tevatron

The CDF and D0 Collaborations presented by

Dan Amidei

University of Michigan

top pair production at Tevatron

- is specified by m_t, pdf's, and
 - α_s implicit in $\sigma_{tt} \sim SM$
 - q^2 in $d\sigma/dM_{tt} \sim SM$, no bumps
 - spin in κ ~ correlated a la SM
 - p_t(tt) in extra jets ok
- and...the production angle
 - CDF &D0 observe consistent large
 A^{tt}_{FB} ~ (19 ± 4)%
 (informal average)
 - compared to NLO QCD+EWK
 Att ~ (6.6±2.0)%

this talk

- physics context
- inclusive $\Delta y A_{FR}$'s
- Δy and M_{tt} dependence
- P_t dependence
- lepton asymmetries
- summary

top A_{FR} in QCD

recent work

- EWK corrections
- lepton asymmetries
- p_t(tt) dependence
- parton-shower asymmetries
- denominators
- factorization
- NNLO is coming

at NLO:

$$-$$
 C = -1 & C = +1 \rightarrow A_C

- at Tevatron this is an A_{FB}
- measure in $\Delta y = y_t y_{\bar{t}}$

$$A^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

inclusive NLO prediction (QCD+EWK):

$$A_{FB} = (6.6 \pm 2.0)\%$$

BSM ideas

- s-channel
 - massive chiral color octets
 - RS gluon

- t-channel
 - -W'Z'
 - color triplets, sextets

- BSM model building must contend with
 - total σ , d σ /d $M_{tt,}$ in good agreement with SM at Tevatron, LHC
 - small A_C at LHC
 - absence of other indirect indications

top ∆y asymmetry in CDF I+jets

Events

- 8.7 fb⁻¹ lepton+met +ge4 jets+btg* 1000
- btg counting bkgs
- 2498 events, bkg = 505 ± 123
- full tt reconstruction
 - M_W , M_t constraints, best χ^2
- NLO model
 - (powheg + EWK A_{FB}) ±30%

CDF Run II Preliminary L = 8.7 fb⁻¹ I+Jets Data NLO (QCD + EW) tt̄ + Bkg Bkg KS: 93.3% 1000 Solution KS: 93.3%

^{*} http://www-cdf.fnal.gov/physics/new/top/2012/LepJet_AFB_Winter2012/

top Δy asymmetry in CDF I+jets

- SVD unfold to parton level
- differential xsec in Δy

•	A_{fb}	parton	=	(16.2	\pm	4.7)%
---	----------	--------	---	-------	-------	-----	----

•
$$A_{fb}$$
 NLO = $(6.6 \pm 2.0)\%$

Source	Uncertainty
Background Shape	0.014
Background Normalization	0.011
Parton Showering	0.010
Jet Energy Scale	0.005
Initial and Final State Radiation	0.005
Color Reconnection	0.001
Parton Distribution Functions	0.001
Correction Procedure	0.003
Total Systematic Uncertainty	0.022
Statistical Uncertainty	0.041
Total Uncertainty	0.047

top Δy asymmetry in D0 I+jets

- PRD84, 112005 (2011), arXiv:1110.2062
- 5.4 fb-1, lepton+met +ge4 jets+btag
- neural net S:B normalization
- 1581 events, $bkg = 455 \pm 39$
- kinematic reconstruction
- unfold to parton level

$$A_{FB}$$
 obs = $(9.2 \pm 3.7)\%$

$$A_{fb}^{I}$$
 parton = $(19.6 \pm 6.5)\%$

top Δy asymmetry in CDF dileptons

- http://www-cdf.fnal.gov/physics/new/top/2011/DilAfb/
- 2 OS leptons (M.ne.Z) + met + 2 jets
- 5.1 fb⁻¹, 337 events bkg = 87 ± 17
- kinematic reconstruction w mass contraints and pt pz likelihood
- parton level via templates assuming $A(\Delta y) = \alpha \Delta y$

comparison of tevatron top $\Delta y A_{FB}$ results Sept. 2012

 including private average simple weighted, neglect correlations

A_{FB} functional dependence

resummed NLO (Almeida et al., PRD87, 014008, 2008)

rapidity dependence

$$A_{FB}(|\Delta y|) = \frac{N(|\Delta y|) - N(-|\Delta y|)}{N(|\Delta y|) + N(-|\Delta y|)}$$

linear ansatz

$$-\chi^2_{p.d.f.} = 1.0$$

line measures correlated significance

- slope > 3σ from 0
- − PE how often $\alpha_{NLO} \ge \alpha_{data}$
- use background sub data
- $p_{NLO} = 0.00892$
- A_{FB} depends ~linearly on Δy
 - slope is 2.4 σ from SM

mass dependence

- 2D unfold M_{ff} and ∆y
 - double differential xsec
- mass dependent asymmetry

$$A_{FB}(M_{t\bar{t}}) = \frac{N_F(M_{t\bar{t}}) - N_B(M_{t\bar{t}})}{N_F(M_{t\bar{t}}) + N_B(M_{t\bar{t}})}$$

- lin fit in obs bkg sub sample
 - slope is $>3\sigma$ from 0
 - fit $\chi^2_{p.d.f.}$ = 0.3
 - $p_{NLO} = 0.00646$
- A_{FB} depends ~linearly on M_{tt}
 - slope is 2.5σ from SM

CDF Run II Preliminary L = 8.7 fb⁻¹

p_t (tt) dependence of the asymmetry

- noted in D0 I+jet analysis
- color coherence
 - top kicked backwards when w/ p_t≠0

MC truth:

p_t (tt) dependence of the asymmetry at CDF

- a experimentally difficult variable
 - extra jets
 - unclustered energy
- modeling is good

p_t (tt) dependence of the asymmetry at CDF

- examine at bkg-sub obs level
 - pythia and powheg follow expected trend
 - CDF 8.7 fb⁻¹ l+jets
 - data above predictions
- to normalize predictions to the data:
 - assume additional source of asymmetry A^a_{FB}
 - since independent asymmetries add
 - each bin of data contains
 A^{Pt}_{FR} + inclusive A^a_{FR}
 - to norm: offset by difference of inclusive asymmetries ΔA_{FB}

p_t (tt) dependence of the asymmetry at CDF

- examine at obs bkg-sub level
 - pythia and powheg follow expected trend
 - CDF 8.7 fb⁻¹ l+jets
 - data above predictions
- to normalize predictions to the data:
 - assume additional source of asymmetry A^a_{FR}
 - since independent asymmetries **add** -0.2
 - each bin of data contains A^{Pt}_{FR} + inclusive A^a_{FR}
 - to norm: offset by difference of
 - inclusive asymmetries ΔA_{FB}

good agreement with both predictions

lepton asymmetries

- lepton follows top
 - independent of asymmetry mechanism if P=0
- reconstructed lepton η is systematically unencumbered
- "bias free" asymmetry indicator

single lepton

$A_{FB}^{l^{\pm}} = \frac{N_{l^{\pm}}(\eta > 0) - N_{l^{\pm}}(\eta < 0)}{N_{l^{\pm}}(\eta > 0) + N_{l^{\pm}}(\eta < 0)}$

$$A_{FB}^{l} = \frac{N_{l}(Q \cdot \eta > 0) - N_{l}(Q \cdot \eta < 0)}{N_{l}(Q \cdot \eta > 0) + N_{l}(Q \cdot \eta < 0)} \qquad A_{CP}^{l} = \frac{N_{l^{+}}(\Delta \eta > 0) - N_{l^{-}}(\Delta \eta < 0)}{N_{l^{+}}(\Delta \eta > 0) + N_{l^{-}}(\Delta \eta < 0)}$$

two lepton

$$A^{ll} = \frac{N(\Delta \eta > 0) - N(\Delta \eta < 0)}{N(\Delta \eta > 0) + N(\Delta \eta < 0)}$$

$$A_{CP}^{l} = \frac{N_{l^{+}}(\Delta \eta > 0) - N_{l^{-}}(\Delta \eta < 0)}{N_{l^{+}}(\Delta \eta > 0) + N_{l^{-}}(\Delta \eta < 0)}$$

single lepton in I+jets

d.Al

D0 5.4 fb⁻¹ l+jets,1532 leptons

A_{fb}^{I} obs. $(14.2 \pm 3.8)\%$ pred. $(0.8 \pm 0.6)\%$

$$A_{fb}^{I}$$
 parton $(15.2 \pm 4.0)\%$ pred. $(2.1 \pm 0.1)\%$

CDF 8.4fb⁻¹ I+jets 2498 leptons

 A_{fb}^{I} obs bkg-sub. $(6.6 \pm 2.5)\%$ pred. $(1.6 \pm 0.5)\%$

$$A_{fb}^{I}$$
 obs bkg-sub. $(3.7 \pm 3.1)\%$ M<450 pred. $(0.7 \pm 0.2)\%$ A $_{fb}^{I}$ obs bkg-sub. $(11.6 \pm 4.2)\%$ M>450 pred. $(3.2 \pm 1.0)\%$

significant

mass dependent

lepton-top asymmetry ratio

- $R_{FB}^I = A_{FB}^I/A_{FB}^{tt}$
 - independent of denominator
 - independent of asymmetry mechanism if P = 0
- $R_{FB}^{I} = (0.3-0.4) \pm 0.05$ (Bernreuter-Si, Campbell-Ellis)

informal suggestion of the D0 5.4fb-1 I+jets numbers

(neglecting correlations)

• $R_{FB}^{I} \sim (15.2 \pm 4.0)/(19.6 \pm 6.5) \sim 0.78 \pm 0.3$

D0 dilepton rapidity asymmetries

- arXiv:1207.0364
- 5.4 fb⁻¹, 2 OS leptons (M.ne.Z) + met + 2 jets + Ht
- 649 events bkg = 244±18
- no tt reconstruction: it's the leptons

D0 dilepton rapidity asymmetries

inclusive

	Raw	Unfolded	Predicted	
A^{ℓ}	$2.9 \pm 6.1 \pm 0.9$	$2.5 \pm 7.1 \pm 1.4$	4.7 ± 0.1	A_{C}
$A_{\mathrm{FB}}^{\ell^+}$	$4.5 \pm 6.1 \pm 1.1$	$4.1 \pm 6.8 \pm 1.1$	4.4 ± 0.2	+ charge leptons
$A_{\mathrm{FB}}^{\ell^-}$	$-1.2 \pm 6.1 \pm 1.3$	$-8.4 \pm 7.4 \pm 2.4$	-5.0 ± 0.2	- charge leptons
$A_{ ext{FB}}^{ar{\ell}}$	$3.1 \pm 4.3 \pm 0.8$	$5.8 \pm 5.1 \pm 1.3$	4.7 ± 0.1	both charges (q.η)
$A^{ar{\ell}ar{\ell}}$	$3.3 \pm 6.0 \pm 1.1$	$5.3 \pm 7.9 \pm 2.9$	6.2 ± 0.2	Δy leptons
A_{CP}^{ℓ}	$1.8 \pm 4.3 \pm 1.0$	$-1.8 \pm 5.1 \pm 1.6$	-0.3 ± 0.1	CP violating

no excursions

D0 dilepton rapidity asymmetries

inclusive

	Raw	Unfolded	Predicted	
A^{ℓ}	$2.9 \pm 6.1 \pm 0.9$	$2.5 \pm 7.1 \pm 1.4$	4.7 ± 0.1	A_{C}
$A_{ m FB}^{\ell^+}$	$4.5 \pm 6.1 \pm 1.1$	$4.1 \pm 6.8 \pm 1.1$	4.4 ± 0.2	+ charge leptons
$A_{\mathrm{FB}}^{\ell^-}$	$-1.2 \pm 6.1 \pm 1.3$	$-8.4 \pm 7.4 \pm 2.4$	-5.0 ± 0.2	- charge leptons
$A_{ m FB}^{\ell}$	$3.1 \pm 4.3 \pm 0.8$	$(5.8 \pm 5.1 \pm 1.3)$	4.7 ± 0.1	both charges (q.η)
$A^{\bar\ell\ell}$	$3.3 \pm 6.0 \pm 1.1$	$5.3 \pm 7.9 \pm 2.9$	6.2 ± 0.2	Δy leptons
A_{CP}^{ℓ}	$1.8 \pm 4.3 \pm 1.0$	$-1.8 \pm 5.1 \pm 1.6$	-0.3 ± 0.1	CP violating

- no excursions
- how does single lepton compare to same in I+jets?

D0 combined lepton asymmetry

- A_{FB}^{I} DIL = (5.8 ± 5.3) % pred (4.7 ± 0.1) %
- A_{FB}^{I} I+jets = $(15.2 \pm 4.0)\%$ pred $(2.1 \pm 0.1)\%$
- combination $A^{I} = (11.8 \pm 3.2)\%$ (BLUE LJ:DIL = 64:36)

informal suggestion of the combined D0 numbers

- $R_{FB}^{I} \sim (11.8 \pm 3.2)/(19.6 \pm 6.5) \sim 0.6 \pm 0.3$
- recall we expect ~ 0.3-0.4
- picture is hanging together?
- but! CDF large DIL A^{tt}_{FB}: (41.7 ± 15.7)%
 - must be reconciled with small A^I_{FB} in D0 DIL

summary

in I+jets

- inclusive asymmetry in agreement CDF+D0
 - informal combo $A^{tt}_{FB} \sim (19 \pm 4)\%$
 - eventual combined $\delta A_{FB} \sim 3.0\%$
- linear M_{ff} and Δy dependence of A_{fb} in tt system (CDF)
 - slopes 3σ from zero and 2σ larger than NLO prediction
- measured $2-3\sigma$ asymmetry in the lepton alone (D0 parton, CDF obs.)
- p_t(tt) dependence agrees with Poweg/Pythia + offset

in dileptons

- no significant A_{FB} in any lepton variable (D0)
 - tension in Al_{FB}? but combined Al_{FB} agrees with expected R
- significant A_{FB} in reco tt Δy (CDF)
 - tension w D0 dil leptons?

something is there?

picture still incomplete, much work still to do

additional material

lepton A_{FB} performance in the W+1 jet sample (CDF)

	$ \eta_{lep} < 0.75$	$ \eta_{lep} \ge 0.75$
Observed Data	0.059 ± 0.001	0.124 ± 0.002
SM Prediction	0.063 ± 0.005	0.134 ± 0.008
Data Minus Prediction	-0.004 ± 0.005	-0.010 ± 0.008

	$p_T < 60 { m GeV}/c$	$p_T \ge 60 { m GeV}/c$
Observed Data	0.083 ± 0.001	-0.009 ± 0.004
SM Prediction	0.089 ± 0.004	-0.001 ± 0.013
Data Minus Prediction	-0.006 ± 0.004	-0.008 ± 0.014

lepton asymmetry

- CDF lepton at reco level
- $A_{FB}^{I} = (6.6)$
- parton level coming

CDF vs D0 lepton rapidity difference in dilepton top signal

		'		
	Raw	Unfolded	Predicted	
A^{ℓ}	$2.9 \pm 6.1 \pm 0.9$			
	$4.5 \pm 6.1 \pm 1.1$			
$A_{ m FB}^{\ell^-}$	$-1.2 \pm 6.1 \pm 1.3$ -	$-8.4 \pm 7.4 \pm 2.4$	-5.0 ± 0.2	
$A_{ ext{FB}}^{\ell}$	$3.1 \pm 4.3 \pm 0.8$ $3.3 \pm 6.0 \pm 1.1$	$5.8 \pm 5.1 \pm 1.3$	4.7 ± 0.1	
$A^{\ell\ell}$	$3.3 \pm 6.0 \pm 1.1$	$5.3 \pm 7.9 \pm 2.9$	6.2 ± 0.2	?????
$A_{ ext{CP}}^{\ell}$	$1.8 \pm 4.3 \pm 1.0$ -	$-1.8 \pm 5.1 \pm 1.6$	-0.3 ± 0.1	

new CDF I+jets

$$q\bar{q} \rightarrow g \rightarrow t\bar{t} \rightarrow (W^+b)(W^-\bar{b}) \rightarrow (l^+vb)(q\bar{q}\bar{b}) \rightarrow l^+ + E_T + 4j + \ge 1 btag$$

full Run II data set

- -8.7 fb^{-1} (soon to be 9.4 fb⁻¹)
- add new muon trigger stream
- require
 - lepton (e/μ)
 E_t/p_t > 20 GeV (/c)
 - missing E_t > 20 GeV
 - .g.e. 4 jets E_t > 20 GeV
 - at least one b-tagged jet
 - H_t > 220 GeV
- find 2498 events
- bkg = 505 ± 123

top reconstruction χ^2

top reconstruction $p_t(t\overline{t})$

a difficult variable

- extra jets
- unclustered energy

backgrounds

- check in 0-btag sample
 - ~ 80% non-tt
- A_{fb} data = $(2.7 \pm 1.4)\%$
- A_{fb} pred. = 2.1%
- suggests
 - bkgs well modeled
 - bkgs not source of A_{fb}
- subtract 'em

mass dependence

$$M_{tt} < 450 \text{ GeV/c}^2$$

$M_{tt} > 450 \text{ GeV/c}^2$

M_{ff} for forward and backward

mass dependent asymmetry

$$A_{FB}(M_{t\bar{t}}) = \frac{N_F(M_{t\bar{t}}) - N_B(M_{t\bar{t}})}{N_F(M_{t\bar{t}}) + N_B(M_{t\bar{t}})}$$

- slope is $>3\sigma$ from 0
- fit $\chi^2_{p.d.f.}$ 0.3
- $p_{NLO} = 0.00646$

Asymmetry in various selections

CDF Run II Preliminary L	= 8.	$.7 \; { m fb}^{-1}$
--------------------------	------	----------------------

	$A_{\rm FB} \ (\pm \ [{\rm stat.+syst.}])$	$A_{\rm FB} \ (\pm \ [{\rm stat.+syst.}])$	$A_{\rm FB} \ (\pm \ [{\rm stat.+syst.}])$
Sample	Inclusive	$M_{t\bar{t}} < 450 \mathrm{GeV/c}^2$	$M_{t\bar{t}} \ge 450 \text{GeV/c}^2$
All Data	0.085 ± 0.025	0.025 ± 0.031	0.198 ± 0.043
Positive Leptons	0.100 ± 0.037	0.044 ± 0.046	0.198 ± 0.060
Negative Leptons	0.071 ± 0.035	0.008 ± 0.043	0.198 ± 0.059
Exactly 0 b-tags	0.056 ± 0.052	0.079 ± 0.066	0.005 ± 0.085
Exactly 1 b -tags	0.103 ± 0.030	0.039 ± 0.037	0.226 ± 0.050
At least 2 b -tags	0.034 ± 0.046	-0.014 ± 0.057	0.122 ± 0.077
Electron Events	0.058 ± 0.038	-0.018 ± 0.048	0.199 ± 0.062
Muon Events	0.107 ± 0.034	0.060 ± 0.041	0.197 ± 0.057

backgrounds

0 b-tags with top subtracted

parton level

- binned data
- correct for smearing S
 - finite resolution
 - incorrect reconstruction
- and acceptance

 A
 - detector coverage
 - trigger selection
 - selection cuts

$$x_i^{Parton} = A_{ij}^{-1} S_{jk}^{-1} x_k^{Data}$$

• SVD unsmear (Hocker-Kartvelshvili)

CDF Run II Preliminary L = 8.7 fb⁻¹

SVD unfold

"d vector"

choose k =4

bias studies with "Octet A"

$ \Delta y $	Found Asymmetry	Uncertainty
Inclusive	0.162	0.039
$0.0 \le \Delta y < 0.5$	0.056	0.036
$0.5 \le \Delta y < 1.0$	0.180	0.056
$1.0 \le \Delta y < 1.5$	0.313	0.081
$ \Delta y \ge 1.5$	0.431	0.132

prior measurements of $A(\Delta y)$ (%)

inclusive (parton level)

CDF l+jet 5.3 fb⁻¹
$$15.8 \pm 7.4$$

CDF DIL 5.1 fb⁻¹ 42.0 ± 16.0
CDF combo 20.1 ± 6.7
D0 l+jet 5.4 fb⁻¹ 19.6 ± 6.5
informal combo 19.8 ± 4.7 NLO 6.6±2.0

differential (at bkg subtracted data level)

	$M < 450 \text{ GeV}/c^2$	$M \ge 450 \text{ GeV}/c^2$	$ \Delta y < 1.0$	$ \Delta y \ge 1.0$
CDF l+jets	-2.2 ± 4.0	26.6 ± 6.2	2.9 ± 4.0	29.1 ± 9.0
D0 l+jets	7.8 ± 4.8	11.5 ± 6.2	6.1 ± 4.1	21.3 ± 9.7
informal combo	2.8 ± 3.3	19.0 ± 4.4	4.5 ± 2.8	25.2 ± 6.6
NLO + EWK	1.5 ± 0.3	4.9 ± 1.0	1.6 ± 0.3	7.2 ± 1.4

this talk: new CDF I+jets, lepton only, $A_{FB}(p_T(tt))$

Historical perspective

